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SUMMARY
A specialized, microstructural lattice model, termed MCFET for combined

Monte Carlo Finite Element Technique, has been developed which simulates micro-
structural evolution in material systems where modulated phases occur and the

directionality of the modulation is influenced by internal and external stresses.

In this approach the microstructure is discretized onto a fine lattice. Each
element in the lattice is labelled in accordance with its microstructural iden-
tity. Diffusion of material at elevated temperatures is simulated by allowing
exchanges of neighboring elements if the exchange lowers the total energy of
the system. A Monte Carlo approach is used to select the exchange site while
the change in energy associated with stress fields is computed using a finite
element technique.

The MCFET analysis has been validated by comparing this approach with a
closed-form, analytical method for stress-assisted, shape changes of a single
particle in an inifite matrix. Sample MCFET analyses for multiparticle prob-
lems have also been run and in general the resulting microstructural changes
associated with the application of an external stress are similar to that
observed in Ni-Al1-Cr alloys at elevated temperatures.

INTRODUCTION

Since many of the physical properties of materials are determined by
microstructure, it is important to be able to predict and control microstruc-
tural development. Recently a microstructural lattice model (refs. 1 and 2)
has been developed which can in principle incorporate all refevant driving
forces and kinetic considerations in a single simulation. Unlike molecular
dynamics, this approach was developed specifically to predict macroscopic
behavior, not atomistic behavior.

The essential elements of this approach consist of mapping the continuum
microstructure onto a discrete lattice and defining interactions and dynamics
for the lattice points which are analogous to those in a continuous system.
Each Tattice site is assigned a label which corresponds to the microstructural
identity of that site. The evolution of the microstructure is governed by the
appropriate dynamics and the relevant driving forces. Nonconserved dynamics




(ref. 3) applies to systems in which the internal energy is dependent on param-
eters which are not conserved during the temporal evolution of the system,
while conserved dynamics (ref. 4) applies when said parameters are conserved.
In the former instance, dynamical evolution is controlled by a Monte Carlo pro-
cedure in which a site is randomly selected and its label changed to one of the
other allowed labels, if the energy of the system is lowered. In the latter
instance, dynamical evolution is controlled by a Monte Carlo procedure in which
a pair of neighboring sites is randomly selected and their labels exchanged if
the energy of the system is lowered.

In the present paper a further refinement of the latter approach, termed
MCFET for combined Monte Carlo Finite Element Technique, is developed specifi-
cally to model materials that contain modulated phases where the directionality
of the modulation is strongly influenced by the application of an external
stress, an example being the Ni-Al-Cr alloy system. In this approach a finite
element technique is used to calculate the strain energy associated with inter-
nal and external stress fields, while microstructural evolution is controlled
using a Monte Carlo procedure which employs conserved dynamics.

The first half of this paper describes the details of the MCFET approach,
while the second half of the paper is devoted to sample MCFET simulations of
increasing complexity.

MCFET APPROACH

To model microstructural changes via the MCFET approach an n x n two-
dimensional grid utilizing square elements was employed. For a realistic
analysis a typical value for n could be as high as 100. The spatial identity
of each element (lattice site) in the grid is uniquely defined by a global num-
bering scheme depicted in figure 1. Each element also has a chemical or micro-
structural identity which serves to define the shape, distribution, and volume
fraction of all phases present in the microstructure. For a two phase micro-
structure each element in the grid would be associated with phase P (precipi-
tate) or phase M (matrix) as shown in figure 1.

As previously mentioned, microstructural changes were modelled in the
present analysis using an approach which is often referred to as conserved
dynamics. In this approach microstructural evolution occurs by exchanges of
neighboring sites and therefore the total number of elements identified with
phase P and M in the aforementioned grid remain constant. The location of the
exchange pair is chosen at random and the success or failure of the exchange
is governed by the change in energy. An exchange which lowers the energy of
the system is accepted, otherwise the exchange is rejected.

As the size of the Monte Carlo grid is finite, the external surfaces or
boundaries of the grid pose a dilema if the problem of interest is one in which
buik behavior dominates, as in the case of an "infinite" solid. To eliminate
these surface effects, periodic boundary conditions were used in the present
analysis. In this approach the Monte Carlo grid appears infinite, although
periodic, as elements on the upper boundary are considered nearest neighbors
of elements on the lower boundary while elements on the right boundary are con-
sidered nearest neighbors of elements on the left boundary.



The energy criteria, which determines the success of an exchange, will be
confined to three components in the present analysis; the interfacial or
surface energy, the mechanical or strain energy of an elastic solid, and the
thermal energy. The interfacial energy is directly proportional to the total
surface area (perimeter in this two-dimensional analysis) associated with the
interface between phases P and M. The mechanical energy arises from strains
generated in the solid by externally applied loads and internal misfit strains
when coherent precipitate(s) are present, as in a multiphase microstructure.
The calculation of the mechanical energy term for an arbitrary microstructure
encountered in such an analysis is difficult if not impossible to attain via
classical elasticity, however, such calculations are conceptually quite easily
attained using finite element techniques, and as previously stated, will be
used in the present approach. The thermal energy term, kT, is directly propor-
tional to the temperature of the solid, T. The significance of the thermal
energy is dependent on the ratio E/kT, where E = Esurface + Estrain is the
change in internal energy for a given exchange. When E/KT << O the probabil-
ity of a successful exchange is high, but when E/KT >> O the probability of a
successful exchange is low. If E/KT 1is near zero the exchange probability
is near 0.5. Computationally, this is attained by accepting an exchange if
[V - TANH(E/KT)>1}/2 is greater than a random number between 0 and 1..

Before leaving the general discussion concerning the calculation of total
energy, it should be noted that scaling of these three energy components rela-
tive to one another is often the most difficult part of the problem. In many
instances, experimental data for surface tension or elastic properties of indi-
vidual phases are questionable or nonexistent, so one can only approximate or
assume values for these physical constants. Changes in these parameters can
profoundly alter the outcome of the MCFET analysis as the dominant energy term
changes. This point will be examined in more detail later in this paper.

The concept of a time scale in most Tattice models is related to the
number of exchanges. In this paper one monte carlo time step, MCS, will be
defined as n squared attempted exchanges where n is the size of the n x n
monte carlo grid.

FINITE ELEMENT STRESS ANALYSIS

Although finite element techniques can be applied to the present problem
without great difficulty, the enormous number of exchanges to be considered in
a realistic analysis would require an impractical amount of computer time to
calculate the mechanical energy term over the entire monte carlo grid for every
exchange. Therefore one must devise a scheme which limits the computation time
per exchange. In the present analysis this is accomplished by confining the
stress analysis to a small region centered about the exchange site and calcu-
lating the mechanical energy term of this smaller, local grid before and after
the exchange. The value of such an approach is that while the absolute ener-
gies of the local grid may be seriously affected by limiting the area over
which the stress analysis is done, the change in energy associated with the
exchange is, however, less likely to be flawed, as similar errors are generated
and then cancel when the difference in the pre- and post-exchange energies is
calculated. Further, as the change in energy values calculated are only used
to decide if a given exchange is accepted, the numerical results, and therefore
the associated error, is not accumulated. The sensitivity of the error as a




function of grid size used in the stress analysis will be quantified at a later
point in the paper.

The smaller, local monte carlo grid on which the stress analysis is run is
shown in figure 2. It is generated from the larger, global monte carlo grid
and is seen to contain 36 elements with the exchange pair residing in the 4
central elements. The actual element type used in the finite element analysis
is the two-dimensional, simplex triangle, and as shown in figure 2 each monte
carlo element contains two such simplex triangles. With this element type and
grid size one must generate and solve a system of linear equations containing
98 unknowns for each exchange. This can be done in a fraction of a second on
a mainframe computer and it is therefore possible to perform a realistic MCFET
analysis which may require thousands of exchanges.

The elastic properties, modulus, Poisson's ratio, etc., of each monte
carlo element are assigned values corresponding to the phase identity for that
element. To model the misfit strains between precipitate and matrix, a volu-
metric strain is simulated by replacing the usual thermal strain term in the
finite element formulation with a numerically equivalent misfit strain. For a
two phase analysis in which the misfit strain is -0.1 percent, the thermal
strain term of the matrix elements are set equal to 0.05 percent while the
thermal strain term of the precipitate elements are set equal to -0.05 percent.
Note that the thermal strain term referred to here is not related to the afore-
mentioned thermal energy term.

The finite element code used in the present analysis is simple but never-
theless time efficient, and was adopted from the text of Segerlind (ref. 5).
In this code the nodal displacements of the finite element grid are computed
by minimizing the potential energy of the system for a given sat of boundary
conditions. From these nodal displacements one then computes the element
strains and stresses, and finally the mechanical energy of the local monte
carlo grid. The choice of boundary conditions are somewhat ambiguous in the
present problem as one is analyzing a small section of an "infinite" solid.
As previously noted, extreme accuracies of the absolute energies are not neces-
sary in the present analysis, therefore the simplest and computational fastest
boundary conditions were adopted. These set of boundary conditions eliminate
rigid body motion by fixing the displacements of the central node at zero,
while rigid body rotation is prevented by setting the lateral displacement of
the node directly above the central node at zero. Otherwise the body is essen-
tially unconstrained. As previously stated, the exchange pair is always con-
tained in the four central elements of the local monte carlo grid and as a
result there is no directional bias to the exchange resulting from the uncon-
strained or free boundary conditions used herein, this would not be true if the
exchange pair were not equidistant from all the outer boundaries of the local
monte carlo grid. In addition to the displacement boundary conditions, if
externally applied stresses are to be modelled the appropriate loads are
applied to the nodes along the outer boundaries. For a uniaxial stress state,
loads of equal but opposite magnitude are applied to the upper and lower bound-
ary nodes of the finite element grid.

The actual codes used to perform the combined monte carlo/finite element
analysis maybe found in the appendix. In addition to these codes there is a
complete description of the input and output data used in an analysis as well
as a simplified flowchart describing the overall approach.



INTEGRATION OF THE GRIDS

Although some description concerning integration of the finite element and
monte carlo grids has preceded this point, it is felt that a separate, more
detailed explanation is warranted as this process is of central importance to
the present analysis. The description of this process is most readily handled
by example. Given the global monte carlo grid of figure 1, one first selects
a site at random and then selects one of eight adjoining elements to form the
exchange pair. If these are of different identity the exchange is attempted.
Taking element E[7,12] in figure 1 as the site for the exchange the next step
would involve selection of a neighboring element. In the present analysis this
is done by choosing a number at random between one and eight, inclusive. As
seen in figure 3, this number defines the exchange pair according to the con-
vention shown. The four central elements of the 6x6 local monte carlo grid on
which the stress analysis will. be done are determined by the logic described
in figure 3. The remainder of the local monte carlo grid is then filled in
using the information found in the global monte carlo grid. Continuing with
the present example, suppose an exchange type 6 was selected, the resulting
grid would appear as shown in figure 2. Note that since the exchange pair is
located near the right boundary of the global monte carlo grid, figure 1, the
local monte carlo grid, figure 2, is composed of elements on both the right
and left hand side of the global monte carlo grid. The finite element based
stress analysis is then performed on the local grid to yield the pre-exchange
strain energy. This is then summed with the interfacial energy. The exchange
is now performed on the local monte carlo grid and the total energy, both
interfacial and strain, is recomputed for the new configuration. If the dif-
ference in the energy before and after exchange is less than the thermal energy
at this position and time, the exchange is accepted and the global monte carlo
grid is modified by exchanging the identity of sites E[7,12] and E[8,11] in
figure 1. A new site and exchange type is chosen at random and the process is
repeated. As previously stated, no numeric information concerning energy,
especially strain energy, is carried forth, only the configurational changes
of the global monte carlo grid affects subsequent calculations of strain and
interfacial energy terms.

VALIDATION OF THE MCFET APPROACH

Before analyzing more complex problems with multiple particle microstruc-
tures it is instructive to look at some simple one and two particle problems to
understand and validate the MCFET approach. In the following analyses, thermal
and surface tension effects will be ignored and the elastic properties of all
phases will be taken to be isotropic.

The first and simplest example to be run tracks the path of a single pre-
cipitate, comprising one monte carlo element, over an extended period of time
on a small 6x6 grid. The particle has the same elastic properties as the
matrix and a misfit of -0.1 percent, further there is no applied stress. The
results of this analysis are summarized in figure 4 after 100 MCS and shows the
number of exchanges per site involving the single precipitate particle. Two
points are to be made. First, of the approximately 3600 attempted exchanges

only 200 involved the precipitate. This number is consistent with random selec-

tion of the exchange pair. Second and perhaps more important, there is no
apparent positional bias introduced by the use of periodic boundaries or the
finite element stress analysis.




In figure 5 a second, single element particle has been added to the 6x6
grid and after only 16 MCS the particles coalesce. Further, in this time only
four exchanges involving the precipitate particles were accepted, all of which
tended to diminish the separation of the two particles. This shows that there
is an attractive force between these small, single element particles. This
attractive force is also evident when the elastic properties of matrix and pre-
cipitate are unequal. Examining the energy change associated with these four
exchanges, it is apparent that particle coalescence produces the most pro-
nounced decrease in system energy. By comparison, the energy change of the
other three exchanges was less than 10 percent of that associated with particle
coalecsence. The presence of this attractive force was not anticipated, as
classical elasticity theory predicts misfitting particles in a matrix with
identical properties are neither attracted nor repelled by one another. The
origin of this force is apparently related to the finite grid size and boundary
conditions employed. The discrepancy with classical elasticity does not appear
to render the technique unusable, as will be shown. Rather, the most signifi-
cant affect of this attraction results from the large energy decrease accompan-
ing particle coalescence. This produces an inherent surface tension over and
above that normally associated with the surface energy term routinely employed
in these lattice models.

As previously stated, the size of the finite element grid must in general
be smaller than the monte cario grid for computational reasons. In this paper
the size of the finite element grid will be 1imited to 6x6. To determine if
this seriously affects the stress analysis a series of finite element analysis
were run on the microstructure shown in figure 6. In these analyses, the mis-
fit is -0.1 percent, the moduli of the particles is 8el10 Pa versus 10el0 Pa for
the matrix, and a stress of 3e8 Pa is applied. The change in strain energy for
the exchange of sites P and M were then computed for a 6x6, 12x12, and 18x18
finite element grid. While the absolute energies are much different for the
three grid sizes, as evident by the pre-exchange strain energy, the change in
strain energies differ by less than 2 percent. Hence, it appecrs that the
choice of a 6x6 finite element grid provides sufficient accuracy while minimiz-
ing computational requirements.

To validate the MCFET approach, microstructural shape changes of a singu-
lar particle associated with the application of a uniaxial stress field of
varying magnitude and direction were examined. This probiem has been analyzed
by others using the approach of Eshelby. 1In particular, Pineau (ref. 6) has
presented a thorough analysis of the single-particle problem in which the equi-
librium particle shape is mapped for a variety of situations. This map has
been reproduced in figure 7(a). The ratio of precipitate to matrix stiffness
is plotted on the y-axis, while the ratio of applied stress to misfit, normal-
ized by the matrix stiffness, is plotted on the x-axis. As seen figure 7(a),
the application of stress can have three effects; the particle may remain
spherical, the particle may elongate such that the elongated direction is par-
allel to the stress axis, or the particle may elongate such that elongated
direction is perpendicular to the stress axis. Also shown on this map are dis-
crete symbols representing MCFET runs. In these instances the starting micro-
structures consisted of a single, square particle, containing four elements, as
shown in figure 7(b). The finite element grid was 6x6 while the monte carlo
grid was 12x12, thereby assuring that the particle would be essentially con-
tained in an infinite matrix. The final particle shape which evolved was a
singular, rectangular particle, 4x1, with one exception. This particle



remained square. These shapes were analogous to that predicted by the Eshelby

approach. The agreement between the two techniques shows the additional inter-
element attraction documented in figure 5 did not seriously influence the out-

come of the MCFET analysis of the single particle probiem.

At this time it is instructive to extend this analysis to the two multi-
element, particle problem pictured in figure 8. Here one examines the effect
of interparticle separation, Rp, on particle shape as a function of applied
stress. This analysis will be limited to a precipitate moduli and misfit of
8e10 Pa and -0.1 percent respectively, and a matrix moduli of 10e10 Pa. Such a
choice traverses the Pineau map, figure 7(a), at Ep/Em of 0.8. It is apparent
that the interparticle separation influences the stress level at which the ini-
tial configuration becomes unstable. The configuration which evolves is still
in general agreement with Pineau's map for the single particle problem. While
one might suspect adjacent particles to have some effect, it is unclear at this
point how much of said effect is an artifact of the finite element technique
similar to that associated with the interelement attraction documented in
figure 5, and how much is a "real" effect that should be modelled.

SCALING EFFECTS

To this point the MCFET analyses have been run without temperature or sur-
face tension effects. The exchange criteria has been based solely on the
change in strain energy. As a consequence the absolute dimensions of a parti-
cle are irrelevent. However, when surface tension effects are included,
assigning an absolute dimension to a particle is very important as surface
energy effects scale with the square of the particle size (surface area) while
strain energy effects scale with the cube of the particle size (volume). In
the remaining MCFET analyses the effects of surface tension and temperature
will be included. As a starting point a surface tension of 2e-2 I3/m2 will be
assumed, and each monte carlo element will be assigned a length unit of le-6 m
on edge. This length scale is appropriate for microstructural analysis.

To introduce temperature effects in the problem, the thermal energy term,
kT, is included in the energy balance, as described in the section entitled
MCFET APPROACH. 1In essence the magnitude of kT is compared to other energy
terms. In the present analysis, k 1is equated to the surface tension. The
rationale for this approach is, it balances the thermal and surface energy
terms of an exchange which creates a single interface between precipitate and
matrix when T = 1. In other words, the solution temperature of the precipi-
tate is near unity in the absence of strain effects. To demonstrate this, sim-
ulations were run with kT equal to le-2, 2e-2, and 3e-2 (T = 0.5, 1.0, and
1.5). In each case the starting microstructure was a single, square particle,
comprising four elements on a 12x12 monte carlo grid. The misfit was taken to
be -0.1 percent, the precipitate moduli was 8el0 Pa versus 10e10 Pa for the
matrix, and there was no externally applied stress. As seen in figure 9, at a
temperature corresponding to kT=1e-2 the particle did not break up nor did it
change shape. At kT=3e-2 the four element particle broke up into four single,
element particles after 7 MCS. This temperature is obviously at or above the
solution temperature of the precipitate for the given parameters. At
kT = 2e-2 the particle breaks up briefly at 8 MCS but rapidly coalesces. How-
ever, as shown in figure 9, the aspect ratio is continually changing as there
is a considerable amount of surface mobility at this temperature.




As previously stated the choice of a length scale can affect the surface
area to volume ratio, and therefore the relative magnitude of the various
energy terms. To illustrate this effect on microstructural evolution the pre-
ceding problem was rerun using a value of kT = 2e-2 and three length scales;
te-5, le-6, and le-7 m, all of which are still physically reasonable choices.
As seen in figure 10, on decreasing the length scale to le-7 m the particle
becomes more prone to break up due to increased mobility of the constituent
elements. On increasing the length scale to le-5 m, the particle is seen to be
stable out to 16 MCS. Further, even surface mobility has been eliminated as
surface tension effects completely overwhelm thermal and strain energy effects.
This example points out the importance of choosing an appropriate length scale
and surface tension number for the problem at hand as such choices can pro-
foundly alter the relative importance of each energy term.

STRESS ASSISTED MICROSTRUCTURAL EVOLUTION

In the preceding sections various aspects of the MCFET approach have been
examined and validated to some degree. In this section, the effects of an
applied stress on a single and multiple particle problem will be examined under
more realistic conditions, surface tension and thermal effects will be included.
Each of these analyses will be run with a 12x12 monte carlo grid initially con-
taining 2x2 square particle(s) with a misfit of -0.1 percent. A matrix moduli
of 10e10 Pa and a precipitate moduli of 8elO Pa will be assumed. Further, a
surface tension value of 2e-2 J/mé and kT of 2e-2 will be used with the
length scale set at le-6 m per element.

The effect of a tensile and compressive stress on a single square particle
will be examined first. These results are presented in figure 11 along with
that for an unstressed particle. In this figure the overall aspect ratio, Ar,
being the averaged height to width ratio of all particles is plotted as a func-
tion of simulated time. This definition was adopted as it is possible for the
particle to break up. HWith no applied stress the aspect ratio flip flops about
unity and it appears that a single particle is the most stable configuration as
it breaks up only briefly at 8 MCS. Under a tensile stress of 3e8 Pa, the
aspect ratio climbs above unity near 6 MCS and remains there but for a brief
time at 8 MCS. At about 12 MCS the particie breaks up but the aspect ratio
still remains above unity. MWhen a compressive stress of -3e8 Pa is applied,
the particle first breaks up near 4 MCS and shortly thereafter the aspect ratio
falls below unity where it remains even when the particles coalesce between 6
and 7 MCS. Although the kinetics of the shape evolution and particle stability
are different from that obtained when surface and thermal effects are absent,
figure 7(a), the aspect ratios obtained here for tension and compression are in
general agreement with the final equilibrium shapes shown in figure 7(a).

The effect of applied stress on a multiparticle microstructure is examined
next. The initial microstructure, containing approximately 45 vol % of precip-
itate arranged as a regular array of square particles, is illustrated in
figure 12. Also shown are the resulting microstuctures after 12 MCS when an
applied stress of 3e8 or -3e8 Pa is present. As seen here, the compressive
stress produces a microstructure in which alternate layers of precipitate and
matrix are aligned perpendicular to the stress axis. When the applied stress
is tensile, a less regular microstructure evolves in which the alignment of
alternating layers of precipitate and matrix is parallel to the stress axis.



The less regular nature of the microstructure under tension was apparent very
early in the analysis. That this should occur is not totally surprising as the
Pineau map shows this type of structure, N region in figure 7¢(a), is stable
over a rather limited area. The continuous, layered microstructure which
evolved in the simulations is similar to that observed in real systems, such as
the Ni-A1-Cr alloys. In these alloys the microstructure, prior to the applica-
tion of an external stress, consists of a regular array of y' precipitates in a
continuous y matrix, much like the idealized, starting microstructure shown in
figure 12. On applying an external stress at elevated temperatures near 1000C,
these alloys form continuous layers of the y and y' phases. This morphology is
often referred to as a rafted microstructure. For tensile loads, raft forma-
tion perpendicular to the stress axis have been observed for some alloy compo-
sitions (ref. 7), while still other alloy compositions form rafts which are
parallel to the stress axis (ref. 8). The behavior of a particular alloy is
believed to be dependent on the misfit and elastic properties of precipitate
and matrix. On applying a compressive load, the sense of the rafting orienta-
tion has been observed to reverse, as was the case for the MCFET simulation.

SUMMARY OF RESULTS

A specialized, microstructural lattice model, MCFET, has been developed
which simulates microstructural evolution in material systems where modulated
phases occur and directionality of the modulation is influenced by internal and
external stresses. The energy of the stress fields is estimated with a finite
element technique while microstructural evolution is simulated with a Monte
Carlo approach in which conserved dynamics is used.

The MCFET analysis has been validated by comparing this approach with a
closed-form, analytical method for the single-particle, infinite matrix prob-
lem. Sample MCFET analyses for a multiparticle problem have also been run and
in general the resulting microstructures are similar to those observed in the
Ni-Al1-Cr alloy system.

Although the MCFET approach appears to be a promising analytical tool as
is, much more development is possible. Some areas for future work include:

1. Improving the accuracy of the finite element stress analysis by deve-
lToping more accurate boundary conditions, use of complex grid elements, and
development of a variable grid geometry to more accurately represent the dis-
tant continuum.

2. Employing three dimensional analysis as opposed to the current two-
dimensional analysis.

3. Develop a dislocation simulator, as misfit dislocations are very impor-
tant to this class of problem.
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APPENDIX

The MCFET analysis comprises four computer programs, MGRID, FGRID, MCFET
and HPLAY. Printouts of each code may be found at the end of this appendix.
Each of these codes is written in FORTRAN77 and can be run on an IBM 370
class, mainframe computer. A flowchart shown below describes how these codes
work together in a MCFET analysis:

MGRID FGRID
Sets up monte Sets up finite
carlo grid element grid

1

MCFET
Actual simulation

¥

HPLAY
Playback of the
microstuctural
simulation gen-
erated by MCFET

As indicated above MGRID and FGRID are run first. The inputs to MGRID
are:

1)Size of the n x n monte carlo grid [MGR0090]
Z2)Location of particle [MGR0120]
3)Size of particle [MGR0150]

The information in brackets refers to the line number of the appropriate
statements in MGRID. MGRID continues to ask for the location and size of
additional particles until the user responds with 0,0 as input to [MGR0120].
The output of MGRID is a file (FILEDEF 10) to be used as input by MCFET.
FGRID has a singular input:

1)Size of the n x n finite element grid [FGR0O050]
and also produces a file (FILEDEF 11) to be used as input by MCFET. In this

paper the value of n in FGRID is generally set at 6.
MCFET is run next and has the following inputs:

1)Unit length of monte carlo element [MCF0270]
2)Temperature [MCF0290]
3)Surface tension [MCF0310]
4)Random number seed and number of finite element calculations {MCF0330]
5)Applied stress, misfit parameter, and size of monte carlo grid [MCF0350]
6)Elastic parameters of matrix D1,D2,D3 [MCF0370]
7)Elastic parameters of precipitate particles D1,D2,D3 [MCF0390]

10



Most of the above have been discussed in the body of this paper, however,
some explanation is in order. First, the dimensions of all inputs must be
consistent. Second, the random number seed [MCF0330] is used by the random
number generator GGUBS, which is a predefined IMSL function; the number of
finite element calculations [MCF0330] is used to limit the computer time per
run; and the misfit parameter [MCF0350] is equal to -d/2 where d is the alloy
misfit. Finally, the elastic parameters are defined as follows:

Dl=Elastic modulus
D2=0.3*D1
D3=0.4*D1

for the analysis employed here.

After MCFET completes the specified number of finite element
calculations the resulting microstructure is displayed and the code then
requests the following additional inputs:

1)Change the number of finite element calculations [MCF3500]
2)Number of finite element calculations [MCF3600]

If one responds with 0 to [MCF3500] the run is terminated, otherwise MCFET
requests input to [MCF3600] and the process is repeated until a responce of 0
is provided as input to [MCF3500]. On termination all information concerning
microstructural evolution is contained in two files (FILEDEF 12 and 13).

As indicated in the flowchart HPLAY is then run to view microstructural
evolution. The inputs to HPLAY are a file produced by MCFET (FILEDEF 12) and
the following:

1)Number of finite element calculations and size of the monte [HPLO0050]
carlo grid

The first item is equal to the last value of said parameter used in MCFET.
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MONTE CARLO GRID (MGRID)

INTEGER MGRID(25,25)

INTEGER R,C

DO 10 R=1,25

DO 10 C=1,25

MGRID(R,C)=1

CONTINUE

PRINT *,'SIZE OF MONTE CARLO GRID'

READ *,NGS , [MGRO090]
PRINT *, 'ORIGIN TAKEN AS LOWER LEFT CORNER
PRINT *,'ROW, COLUMN OF PARTICLE ORIGIN'
READ * R,C [MGR0120]
IF (R .EQ. 0) GO TO 35

PRINT *,'PARTICLE HEIGHT, WIDTH'

READ *,H,W [MGRO150]
DO 30 I=R,R+H-1

DO 30 J=C,C+W-1

MGRID(I,J)=2

CONTINUE

GO TO 20

CONTINUE

DO 40 I=1,NGS

DO 40 J=1,NGS

WRITE (10,50) I,J,MGRID(I,J)

FORMAT (314)

CONTINUE

DO 70 R=NGS,1,-1

WRITE (6,100) (MGRID(R,C),C=1,NGS)
CONTINUE

FORMAT (2413)

STOP

END



GRID GENERATION CODE (FGRID)
INTEGER N1(1250),N2(1250),N3(1250),P(12),Q(12),NS(6,1250),LS
REAL B(3,6,1250),AR2(1250)
PRINT *,' INPUT LATTICE SIZE AS N X N’
READ *,LS [FGRO050]
NE=(2*LS)*LS

NP=(LS+1)#**2

NC=LS

NR=2*LS

N4=INT(NP**0.5)

N5=2*N4

P(1)=1

P(2)=2

P(3)=N4+1

P(4)=2

P(5)=N4+2

P(6)=N4+1

P(7)=2

P(8)=N4+3

P(9)=N4+2

P(10)=2

P(11)=3

P(12)=N4+3

Q(1)=N4+1

Q(2)=N5+2

Q(3)=N5+1

Q(4)=N4+1

Q(5)=N4+2

Q(6)=N5+2

Q(7)=N&+2

Q(8)=N4+3

Q(9)=N5+2

Q(10)=N4+3

Q(11)=N5+3

Q(12)=N5+2

ITERM1=NC/2

ITERM2=NR/4

DO 3 I=1,1TERMI1

DO 3 J=1,ITERM2

DO 3 K=1,4
L1=K+4%(J-1)+2*NR*(1-1)
12=3*(K-1)
13=2%(1-1)*INT(NP**0.5)+2%(J-1)
IDUM1=1+12

IDUM2=2+12

IDUM3=3+12
N1(I11)=P(IDUM1)+I3
N2(11)=P(IDUM2)+13
N3(I1)=P(IDUM3)+I3
11=K+4%(J-1)+(2%(I-1)+1)*NR
N1(I1)=Q(IDUM1)+I3
N2(11)=Q(IDUM2)+13
N3(11)=Q(IDUM3)+13

CONTINUE
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DO &4 I=1,NE
IY1=(N1(I)-1)/(LS+1)
X1=(N1(I)-IY1*(LS+1))~1
IY2=(N2(I)-1)/(LS+1)
X2=(N2(1)-I1Y2*(LS+1))~1
IY3=(N3(I)-1)/(LS+1)
X3=(N3(I)-IY3*(LS+1))~1
Y1=IY1

Y2=1Y2

Y3=1Y3

B(1,1,1)=Y2-Y3
B(1,3,1)=Y3-Y1
B(1,5,1)=Y1-Y2
B(2,2,1)=X3-X2
B(2,4,1)=X1-X3
B(2,6,1)=X2-X1
B(3,1,1)=B(2,2,1)
B(3,2,1)=B(1,1,1)
B(3,3,1)=B(2,4,1)
B(3,4,1)=B(1,3,I)
B(3,5,1)=B(2,6,1)
B(3,6,1)=B(1,5,I)
AR2(1)=X2#*Y3+X3*Y14+X1*Y2-X2%Y1-X3*Y2-X1*Y3
NS(1,I)=N1(I)*2-1
NS(2,1)=N1(I1)*2
NS(3,1)=N2(I)*2-1
NS(4,1)=N2(1)*2
NS(5,I1)=N3(I)*2-1
NS(6,I)=N3(1)*2

WRITE (11,6) I,AR2(I)
WRITE (11,7) NS(1,I),NS(2,I),NS(3,I),NS(4,I),NS(5,I),NS(6,1)
DO 9 J=1,3

DO 9 K=1,6

WRITE (11,8) B(J,K,I)
FORMAT (I4,F10.4)
FORMAT (614)

FORMAT (E12.6)

CONTINUE

CONTINUE

STOP

END
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COMBINED MONTE CARLO FINITE ELEMENT STRESS ANALYSIS (MCFET)
THIS VERSION OF THE CODE INCLUDES RANDOM THERMAL EFFECTS

THIS VERSION ALSO INCLUDES SURFACE ENERGY EFFECTS

MAXIMUM SIZE OF MONTE CARLO GRID 25X25 (MGRID DATA)

STRESS ANALYSIS DONE ON A 6X6 FINITE ELEMENT GRID (FGRID DATA)

98 GLOBAL DEGREES OF FREEDOM (NP)
72 TRIANGULAR SIMPLEX ELEMENTS (NE)
BANDWIDTH=18 (NBW)

INPUT DATA

DOUBLE PRECISION DSEED
INTEGER R, C,R0,CO,R1,C1,RN,CN,RS,CS,E

INTEGER M(6,6),MGRID(25,25),NPHAS(72),NS(6,72)
REAL GF(98),GU(98),GSM(98,98),AR2(72),RN3(3)

REAL B(3,6,72),D(3,3,2),CM(6,3),ESM(6,6),EF(6),STRA(3),STRE(3)

TIM=0.0
T=1.0

NP=98

NE=72

NBW=18

NMCS=0

CALL ERRSET (207,0,-1)
CALL ERRSET (208,0,-1)
CALL ERRSET (209,0,-1)
PRINT *,'UNIT LENGTH'

READ *, UL , [MCF0270]
PRINT *, 'TEMPERATURE (0=COLD TO 1=HOT)

READ *, TEMP : [MCF0290]
PRINT *,'SURFACE ENERGY OF INTERFACE

READ *, SURFE , [MCF0310]
PRINT *, 'DSEED, ITERATIONS

READ *,DSEED, ITER ’ [MCF0330]
PRINT *,' YLOAD, EPHAS1, SIZE OF MONTE CARLO GRID

READ *,YLOAD,EPHAS1,NLS ' [MCF0350]
PRINT *,'D1, D2, D3 FOR PHASE 1

READ *,D1P1,D2P1,D3P1 ' [MCF0370]
PRINT *, D1, D2, D3 FOR PHASE 2

READ *,D1P2,D2P2,D3P2 [MCF0390]

EPHAS2=-EPHAS1
WRITE (12,62) YLOAD,DSEED

WRITE (12,63) D1P1,D2P1,D3P1,EPHAS1
WRITE (12,63) D1P2,D2P2,D3P2,EPHAS2
WRITE (12,64) TEMP,SURFE,UL

FORMAT (2E12.6)

FORMAT (3E12.6,E12.6)

FORMAT (3E12.6)

YLOAD=YLOAD*UL

INPUT MGRID DATA

DO 10 R=1,NLS

DO 10 C=1,NLS

READ (10,15) IDUM,JDUM,MGRID(R,C)
WRITE (12,15) IDUM,JDUM,MGRID(R,C)
FORMAT (314)
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CONTINUE

INPUT FGRID DATA
DO 20 I=1,NE

READ (11,25) IDUM

READ (11,35) NS(1,I),NS(2,I),NS(3,1),NS(4,1),NS(5,I),NS(6,1)

DO 30 J=1,3
DO 30 K=1,6

,AR2(1)

READ (11,45) B(J,K,I)

FORMAT (I4,F10.4)
FORMAT (614)
FORMAT (E12.6)
CONTINUE
CONTINUE

CONSTRUCT MATERIALS PROPERTY MATRIX

D(1,1,1)=D1P1*UL
D(2,2,1)=D1P1*UL
D(3,3,1)=D3P1*UL
D(1,2,1)=D2P1*UL
D(2,1,1)=D2P1*UL
D(1,3,1)=0.0
D(3,1,1)=0.0
D(2,3,1)=0.0
D(3,2,1)=0.0
D(1,1,2)=D1P2*UL
D(2,2,2)=D1P2*UL
D(3,3,2)=D3P2*UL
D(1,2,2)=D2P2*UL
D(2,1,2)=D2P2*UL
D(1,3,2)=0.0
D(3,1,2)=0.0
D(2,3,2)=0.0
D(3,2,2)=0.0

MAIN CONTROL LOOP

SITE AND EXCHANGE SELECTION
IF (NMCS .GE. ITER) GO TO 21

CALL GGUBS(DSEED,

3,RN3)

RO=INT(RN3(1)*NLS+1)
CO=INT(RN3(2)*NLS+1)

E=INT(RN3(3)#*8+1)

TIM=TIM+1
R1=R0O

C1=C0

IF (E .EQ. 1 .OR.
IF (E .EQ. 6 .OR.
IF (E .EQ. 6 .OR.
IF (E .EQ. 7 .OR.

IF (R1 .GT. NLS)
IF (R1 .LT. 1) R1
IF (C1 .GT. NLS)
IF (C1 .LT. 1) C1

IF (MGRID(RO,C0) .EQ. MGRID(R1,Cl)) GO TO

E .EQ.
E .EQ.
E .EQ.
E .EQ.
R1=R1-NLS
=R1+NLS

C1=C1-NLS
=C14NLS

SN Ln;

.OR.
.OR.
.OR.
.OR.

tr1 te1

.EQ.
.EQ.
.EQ.
.EQ.

8)
7)
5)
8)

C1=C0+1
C1=C0-1
R1=RO+1
R1=R0O-1



40

59

41

NMCS=NMCS+1
CONSTRUCT M ARRAY BEFORE EXCHANGE
IF (E .EQ. 1 .OR. E .EQ. 5) THEN
RS=3-R0O
CS=3-C0
END IF
IF (E .EQ. 2 .OR. E .EQ. 6) THEN
RS=3-R0
CS=4-C0
END IF
IF (E .EQ. 3 .OR. E .EQ. 7) THEN
RS=4-R0
CS=4-CO
END IF
IF (E .EQ. 4 .OR. E .EQ. 8) THEN
RS=4-R0O
CS=3-C0
END IF
DO 40 R=6,1,-1
DO 40 C=1,6
RN=R-RS
CN=C-CS
IF (RN .GT. NLS) RN=RN-NLS
IF (RN .LT. 1) RN=RN+NLS
IF (CN .GT. NLS) CN=CN-NLS
IF (CN .LT. 1) CN=CN+NLS
M(R,C)=MGRID(RN, CN)
CONTINUE
DO 50 R=1,6
DO 50 C=1,6
IDUM=6*R+C-6
NPHAS (2*IDUM)=M(R,C)
NPHAS(2*IDUM-1)=M(R,C)
CONTINUE
SURFACE AREA BEFORE EXCHANGE
SURFO=0
DO 59 I=3,4
DO 59 J=2,4
IF (M(I,J) .EQ. M(I,J+1)) SURFO=SURFO+1
IF (M(J,I) .EQ. M(J+1,I)) SURFO=SURFO+1
CONTINUE
SURFO=12-SURFO
PATH=1
TMSE=0.0
GO TO 31
CONSTRUCT M ARRAY AFTER EXCHANGE
TMSEO=TMSE
PATH=2
TMSE=0.0
IF (E .EQ. 1) THEN
MO=M(3, 3)
M(3,3)=M(3,4)
M(3,4)=MO
END IF
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IF (E .EQ. 2) THEN
MO=M(3,4)
M(3,4)=M(4,4)
M(&,4)=MO
END IF
IF (E .EQ. 3) THEN
MO=M(4,4)
M(4,4)=M(4,3)
M(4,3)=MO
END IF
IF (E .EQ. 4) THEN
MO=M(4,3)
M(4,3)=M(3,3)
M(3,3)=M0
END IF
IF (E .EQ. 5 .OR. E .EQ. 7) THEN
MO=M(3,3)
M(3,3)=M(4,4)
M(&,4)=MO
END IF
IF (E .EQ. 6 .OR. E .EQ. 8) THEN
MO=M(3,4)
M(3,4)=M(4,3)
M(4,3)=MO
END IF
DO 60 R=1,6
DO 60 C=1,6
IDUM=6*R+C-6
NPHAS( 2*IDUM)=M(R, C)
NPHAS(2*IDUM-1)=M(R,C)
CONTINUE
SURFACE AREA AFTER EXCHANGE
SURFN=0
DO 69 I=3,4
DO 69 J=2,4
IF (M(I,J) .EQ. M(I,J+1)) SURFN=SURFN+1
IF (M(J,I) .EQ. M(J+1,I)) SURFN=SURFN+1
CONTINUE
SURFN=12-SURFN
GO TO 31
COMPARE ENERGY BEFORE AND AFTER EXCHANGE
TMSEN=TMSE '
ECHANG=TMSEN-TMSEO+( SURFN-SURFO)*SURFE
NEX=0
PROBKT=0.5%*( 1.0-TANH(ECHANG/(2.0*TEMP)))
CALL GGUBS(DSEED, 1,RN3)
IF (RN3(1) .LE. PROBKT) THEN
NEX=1
MO=MGRID(RO,CO)
MGRID(RO,C0)=MGRID(R1,C1)
MGRID(R1,C1)=MO
END IF
WRITE (12,65) NMCS,R0,CO,R1,C1,NEX,ECHANG,TIM
FORMAT (16,514,2E12.6)



GO TO 11
MECHANICAL ENERGY CALCULATION

CONSTRUCT STIFFNESS MATRIX AND FORCE MATRIX

1 DO 70 I=1,NP

DO 80 J=1,NP
GSM(I,J)=0.0

80 CONTINUE
GF(1)=0.0

70 CONTINUE
DO 90 KK=1,NE
IF (NPHAS(KK) .EQ. 1) THEN

ET=EPHAS1
ELSE

ET=EPHAS2
END IF

C CALCULATE CM=BT X D
DO 100 I=1,6
DO 100 J=1,3
CM(1,J)=0.0
DO 100 K=1,3
CM(1,J)=CM(I,J)+B(K,I,KK)*D(K,J,NPHAS(KK))

100 CONTINUE

C MATRIX MULTIPLICATION TO OBTAIN ESM AND EF
DO 110 I=1,6
SUM1=0.0
DO 120 K=1,2
SUM1=SUM1+CM(I,K)*ET

120  CONTINUE
DO 110 J=1,6
SUM=0.0
DO 130 K=1,3
SUM=SUM+CM(I,K)*B(K,J,KK)

130  CONTINUE
ESM(I,J)=SUM*T/(2.0%AR2(KK))
EF(I)=SUM1%T/2.0

110  CONTINUE

C INSERT ELEMENT MATRIX INTO GLOBAL MATRIX
DO 140 I=1,6
I1=NS(I,KK)
GF(11)=GF(1I)+EF(I)

DO 140 J=1,6
JJ=NS(J,KK)
GSM(II,JJ)=GSM(II,JJ)+ESM(I,J)

140  CONTINUE

90 CONTINUE

C ENFORCE BOUNDARY CONDITIONS

DO 260 I=49,51

IB=I

IF (I .EQ. 51) IB=63

BV=0.0

GSMO=GSM(IB, IB)

DO 270 J=1,NP

[ NeReNeNe!




270

260

150

180

170
160

200

190

220

20

GSM(1B,J)=0.0
GSM(J,IB)=0.0
CONTINUE
GF(IB)=0.0
GSM(IB,IB)=GSMO
CONTINUE
APPLY BOUNDARY LOADS
DO 150 I=1,7
IYL=2*1
1YU=2*(42+1)
GF(IYL)=GF(IYL)-YLOAD
GF(IYU)=GF(I1YU)+YLOAD
CONTINUE
TRIANGULARIZE SYSTEM OF LINEAR EQUATIONS
DO 160 N=1,NP-1
NFIN=N+NBW-1
IF (NFIN .GT. NP) NFIN=NP
DO 170 I=N+1,NFIN
RM=GSM(I,N)/GSM(N,N)
DO 180 J=N+1,NFIN
GSM(1,J)=GSM(I,J)-GSM(N,J)*RM
CONTINUE
GF(I1)=GF(1)-GF(N)*RM
CONTINUE
CONTINUE
SOLVE LINEAR SYSTEM OF EQUATIONS BY BACKWARD SUBSTITUION
GU(NP)=GF(NP) /GSM(NP,NP)
DO 190 I=NP-1,1,-1
SUM=0.0
NFIN=I+NBW-1
IF (NFIN .GT. NP) NFIN=NP
DO 200 J=I+1,NFIN
SUM=SUM+GSM(I,J)*GU(J)
CONTINUE
GU(I)=(GF(I)-SUM)/GSM(1,1)
CONTINUE
CALCULATE STRESS AND STRAIN
DO 210 N=1,NE
DO 220 I=1,3
STRA(I)=0.0
DO 220 K=1,6
STRA(I)=STRA(I)+B(I,K,N)*GU(NS(K,N))/AR2(N)
CONTINUE
DO 230 I=1,3
IF (NPHAS(N) .EQ. 1) THEN
ET=EPHAS1
ELSE
ET=EPHAS2
END IF
IF (I .EQ. 3) ET=0.0
STRE(I)=0.0
DO 230 K=1,3



230

240

210

250

21

55
280

520

510
500

STRE(1)=STRE(1)+D(1,K,NPHAS(N))*(STRA(K)-ET)
CONTINUE
CALCULATE STRAIN ENERGY
STE=0.0
DO 240 I=1,3
IF (NPHAS(N) .EQ. 1) THEN
ET=EPHAS1
ELSE
ET=EPHAS2
END IF
IF (I .EQ. 3) ET=0.0 .
STE=STE+STRE(I)*(STRA(I)-ET)
CONTINUE
TMSE=TMSE+STE*AR2(N)
CONTINUE
CALCULATE POTENTIAL ENERGY OF APPLIED LOADS
SUMPU=0. 0
DO 250 I=1,7
1YL=2*1
IYU=2%(42+1)
SUMPU=SUMPU+YLOAD* (GU(IYU)~-GU(IYL))
CONTINUE
CALCULATE TOTAL MECHANICAL ENERGY AND RETURN TO CONTROL LOOP
TMSE=TMSE /4 -SUMPU
IF (PATH .EQ. 1) GO TO 41
IF (PATH .EQ. 2) GO TO 51
OUTPUT FINAL GRID TO SCREEN AND FILE
PRINT *,'CHANGE ITER (1=YES 0=NO)'
READ *,IDUM1 [MCF3500]
PRINT *,'GRID @ NMCS=',KNMCS
PRINT *,'TIME=',b TIM/(NLS*NLS)
DO 280 R=NLS,1,-1
WRITE (6,55) (MGRID(R,C),C=1,NLS)
FORMAT (2413)
CONTINUE
IF (IDUM1 .EQ. 0) GO TO 520
PRINT *,'ITER=',ITER
PRINT *,'NEW VALUE FOR ITER'
READ *,ITER [MCIF3600]
GO TO 11
DO 500 I=1,NLS
DO 500 J=1,NLS
WRITE (13,510) I,J,MGRID(I,J)
FORMAT (3I4)
CONTINUE
STOP
END

21
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110
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PLAYBACK
INTEGER MGRID
INTEGER R,C,R

(25,25)
0,Co,R1,C1

PRINT *,'ITERATIONS, SIZE OF GRID'

READ *,ITER,N
READ (12,62)
WRITE (6,62)
FORMAT (2E12.
READ (12,63)
WRITE (6,63)
READ (12,63)
WRITE (6,63)
FORMAT (3E12.
READ (12,64)
WRITE (6,64)
FORMAT (3E12.
DO 10 R=1,NGS
DO 10 C=1,NGS
READ (12,20)
FORMAT (314)
CONTINUE

DO 30 R=NGS,1
WRITE (6,40)
FORMAT (2413)
CONTINUE

READ (12,60) NMCS,RO0,CO,R1,C1,NEX,ECHANG,TIM

FORMAT (16,51
IF (NEX .EQ.
MO=MGRID(RO,C

GS
YLOAD, DSEED

DSEED, YLOAD

6)
D1P1,D2P1,D3P1,EPHAS]
D1P1,D2P1,D3P1,EPHAS1
D1P2,D2P2,D3P2,EPHAS2
D1P2,D2P2,D3P2,EPHAS2
6,E12.6)

TEMP, SURFE, UL

TEMP, SURFE , UL

6)

IDUM, JDUM,MGRID(R,C)

» =1
(MGRID(R,C),C=1,NGS)

4,2E12.6)
0) GO TO 130
0)

MGRID(RO,CO0)=MGRID(R1,C1)
MGRID(R1,C1)=MO

PRINT *,'NMCS=',6NMCS,'E CHANGE=',KECHANG, 'TIME=',TIM

DO 100 R=NGS,
WRITE (6,110)
FORMAT (2413)
CONTINUE

IF (NMCS .GE.
IF (NEX .EQ.
GO TO 70
STOP

END

1,-1
(MGRID(R,C),C=1,NGS)

ITER) GO TO 120
0) GO TO 70

[HPLOO050]
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0 0
4 8
il 3o 0

TN

L

GLOBAL GRID

0 1 0

FOUR CENTRAL ELEMENTS OF
LOCAL GRID

FIGURE 3. - LOGIC USED TO BUILD LOCAL MONTE CARLO GRID FROM GLOBAL
GRID GIVEN SITE O AND AN EXCHANGE TYPE, 1 THRU 8.
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FIGURE 4. - RANDOM WALK EXPERIMENT FOR A SINGLE ELEMENT PARTICLE.
THE NUMBER OF EXCHANGES, N, INVOLVING THE PRECIPITATE FOR EACH
OF THE 36 LATTICE SITES APPEARS TO SHOW THERE IS NO POSITIONAL
BIAS.
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FIGURE 5, - ELEMENT INTERACTION ANALYSIS. NOTE THERE IS AN
ATTRACTIVE FORCE BETWEEN THE TWO ELEMENTS. FURTHER, ELE-
MENT COALESCENCE PRODUCES THE GREATEST ENERGY CHANGE.
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GRID SIZE (N) E,',/E1gz AEN/AE18
6 0.132 0.992
12 0.464 0.981
18 1.000 1.000

FIGURE 6. - VARIATION OF INITIAL STRAIN ENERGIES, Ed, AND CHANGE IN
STRAIN ENERGIES. AEy. ASSOCIATED WITH THE INTERCHANGE OF SITES P
AND M AS A FUNCTION OF THE FINITE ELEMENT GRID SIZE, N.
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FIGURE 8. - EFFECT OF INTERPARTICLE SEPARATION. R,. ON PARTICLE SHAPE
AS A FUNCTION OF APPLIED STRESS. o©.
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FIGURE 9. - SCALING OF THE THERMAL ENERGY TERM. (A) AS KT
1S INCREASED THERE IS A GREATER TENDENCY FOR THE PART-
ICLE TO BREAK UP. (B) AT KT = 2x1072 THE PARTICLE SHAPE
(H/W) CONTINUALLY CHANGES.
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FIGURE 10. - CHANGING THE LENGTH UNIT DRAMATICALLY ALTERS

THE IMPORTANCE OF SURFACE ENERGY BY CHANGING THE SURFACE
AREA TO VOLUME RATIO. SMALLER PARTICLES (DECREASING UNIT
LENGTH) HAVE MORE TENDANCE TO BREAK UP., 1.€.. THEY TEND
TO DISSOLVE MORE READILY.
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FIGURE 11. - EFFECT OF APPLIED STRESS ON PARTICLE ASPECT
RATIO. A.. WHEN N, = 1 THE ASPECT RATIO IS THE HEIGHT
TO WIDTH RATIO OF THE SINGLE PARTICLE. WHEN N, >1. THE
ASPECT RATIO IS AN AVERAGED HEIGHT TO WIDTH RATIO OF ALL
PARTICLES. 1IN THIS ANALYSIS. AN H/W RATIO GREATER THAN
1 CORRESPONDS TO PARTICLE ELONGATION PARALLEL TO THE
APPLIED STRESS AXIS.
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FIGURE 12. - EFFECT OF APPLIED STRESS ON A MULTI-PARTICLE MICROSTRUCTURE.
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